

EMK-01

Klasse A Qualitätsanalysator

www.enteselektronik.com

INHALTSVERZEICHNIS

1.	Einleitung	. 3	3
2.	Sicherheits- und Warnhinweise	. 3	3
3.	Inhalt der Box	. 3	3
4.	Gerätebeschreibung	. 4	1
	4.1 Frontplatte	4	1
	42 Rückplatte	Δ	i
5	Genessene Parameter	5	5
6	Installation	6	ś
7		. C	2
1.	Allscilluss	. 0) 7
		· <u> </u>	-
	7.2. Netzspannung	· <u>/</u>	_
	7.3. Spannungsmesseingange	. [_
	7.4. Strommesseingänge	. 7	7
	7.6. Ethernet	. 8	3
	7.6.1. LAN-Verbindung des EMK-01	. 8	3
	7.6.2. WiFi-Verbindung des EMK-01	. 9)
	7.6.3. LAN-Verbindung des EMK-01 über NAT-Server	. <u>c</u>)
	7 7 USB	1	10
	7.8 Temperatursensor	1	10
	7.9 Digitale Fin- und Ausgänge	1	iñ
Q	Certificite Lingen	1	11
0.		. 1	11
		.	11
	8.2. Messunger - Haupiparameter	.]	
	8.2.1. Netzform	. 1	12
	8.2.2. Nennspannung	. 1	13
	8.2.3. Nennstrom	. 1	13
	8.2.4. Flicker	. 1	13
	8.2.5. Rundsteuersignal	. 1	13
	8.2.6. Spannungswändler	. 1	13
	8.2.7 Stromwandler	1	13
	828 Durchschnittsberechnung	1	13
	8.2.9 Energie	1	14
	8.3. Kommunikationspinstallung	1	11
	9.3.1 Ethornat	1	11
	0.0.1. Eulemet	. 1 1	14
	8.3.2. Web Server	. 1	10
	8.3.3. Modbus TCP	. 1	15
	8.3.4. FTP Server	. 1	15
	8.3.5. TCP-Konverter	. 1	15
	8.3.6. RS485	. 1	6
	8.4. Analysator	. 1	6
	8.5. NTP-Server / Zeitabschnitt	. 1	16
	8.6. E-mail	. 1	17
	8.7 Transiente	1	17
	8.8 Freignisse	1	18
	8.8.1 Spannungseinhruch	1	ia
	8.8.2 Übarshannung Swell	1	ia
	8.8.3 Schoollo Sponning Gördarungon (PVC)	5	20
		- 2	20
	0.40. Alsema	- 2	10
	o. 10. Alaime	- 4	11
	8.12. Datenspeicherung	- 2	22
	8.13. Speichereinstellung	. 2	22
	8.14. Info	. 2	23
	9. Betrieb	. 2	23
	9.1.Numerik	. 2	23
	9.1.1. Flicker	. 2	23
	9.2. Oberschwingung	. 2	23
	9.3 Vektoren	2	23
	94 Graphen	2	24
	9.5 Scone	2	24
	0.6. Groupse	2	.+)/
	0.0. Lieginsse	. 4	-4)/
		. 4	-4
	9.0.2. Schnelle Spannungsanderungen (KVC)	2	<u>(</u> 5
	9.6.3. Transient-Liste	.2	25
	9.6.4. Versorgungsunterbrechungen	. 2	25
10). Web-Schnittstelle	. 2	26
11	. Software-Update	. 2	26
12	2. Technische Daten	. 2	27

1. Einleitung

Der Klasse-A-Qualitätsanalysator EMK-01 ist für die Messung der Qualität von Niederspannungs- und MV-Spannungsnetzen gemäß der Norm EN 50160 ausgelegt. Die Messungstechnik ist gemäß IEC 61000-4-30: Elektromagnetische Verträglichkeit (EMV) - Teil 4-30: Prüf- und Messverfahren - Verfahren zur Messung der Spannungsqualität, Messungsklasse A entwickelt.

Der Klasse-A-Qualitätsanalysator EMK-01 dient zur Messung und Überwachung elektrischer Parameter in 2-, 3- und 4-Leiternetzen sowie TN- und TT-Netzen.

2. Sicherheits- und Warnhinweise

Das Gerät entspricht der Norm EN 61010-1: Sicherheitsanforderungen an elektrische Geräte zur Messung, Steuerung und Verwendung im Labor.

- Die Installation des Geräts darf nur von qualifiziertem und autorisiertem Personal durchgeführt werden. Der Hersteller übernimmt keine Haftung für Schäden aufgrund der Nichtbeachtung der Anweisungen dieser Anleitung.
- Das Gerät darf nicht an Orten mit hoher Luftfeuchtigkeit und in der Nähe von explosiven Gasen installiert werden.
- Das Gerät muss gemäß den Anweisungen in der Bedienungsanleitung verwendet werden.
- Stellen Sie vor dem Trennen der Anschlussklemmen eines Stromwandlers sicher, dass die Stromwandlerklemmen kurzgeschlossen sind.
- Bevor irgendeine Änderung an Installation oder Anschluss vorgenommen wird, muss die Netzspannung getrennt werden.
- Verwenden Sie das Gerät nicht, um Netzwerk-, Spannungs- und Stromparameter zu messen, die höher als zulässig sind.

3. Inhalt der Box

- EMK-01 Klasse-A-Qualitätsanalysator
- Schraubhalter 2 Teile
- Temperatursensor
- Bedienungsanleitung
- Testbericht

4. Gerätebeschreibung 4.1. Frontplatte

E//Vergic	EMK-01
Hauptmenü	
123 Numerik	Harmonics
Vektoren	Graphen
R Scope	🍕 Optionen
Ereihnisse	O Einstellungen
I	E/VTES
	V S

Abb. 1. Etikette an der Frontplatte

★ Taste zum Abbruch oder Zurückkehren

Taste zum Scrollen nach oben im Menü oder zum Erhöhen der Parameterwerte.

Taste zum Scrollen nach unten im Menü oder zum Verringern der Parameterwerte.

Taste zum Aufrufen des Menüs und zum Auswahl der Parameter

Fn (Zoom)-Taste zur Änderung der Funktionen der anderen Tasten

4.2. Rückplatte

	Typ : EMK-01 Un: 230VAC, 50Hz HW: 2,0 IP20/IP54 Versorgungsspannungseingang 230VAC N Ethemet RJ-45 USB-serviceport	$ \begin{array}{c} 22 \\ 23 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ 4 \\ - \\ - \\ 4 \end{array} $
6 7 8 9 10 11 12 13	I k II k II k II K Stornsingang to construct and the second Stornsingang to construct and the second to construct and t	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Abb. 2. Etikette an der Rückplatte

5. Gemessene Parameter

Der Klasse-A-Qualitätsanalysator EMK-01 dient zur Messung und Überwachung elektrischer Parameter in 2-, 3- und 4-Leiternetzen sowie TN- und TT-Netzen. Die Architektur des EMK-01- Qualitätsanalysators basiert auf einem schnellen 32-Bit-RISCMikroprozessor, der eine hohe Rechenleistung bietet, um sicherzustellen, dass das Gerät den IEC 61000-4-30 Class A-Standard vollständig erfüllt.

Parameter	L1	L2	L3	L4	L1-2	L2-3	L3-1	ΣL1-3	ΣL1-4	Мах	Min	AVG	Measuring range	Displaying range	Accuracy
Spannung (L-N)	•	•	•	•						•	•	•	2 600 V	0 1 MV	± 0,1 %
Spannung (L-L)					•	•	•			•	•	•	4 1000 V	0 1 MV	± 0,1 %
Frequenz	•									•	•	•	40 70 Hz	40 70 Hz	± 10 mHz
Strom	•	•	•	•				•	•	•	•	•	0,001 6 A	0 1 MA	± 0,1 %
cosφ	•	•	•	•						•	•	•	0.01 L 0.01 C	0.01 L 0.01 C	±1%
Leistungsfaktor	•	•	•	•						•	•	•	0.01 L 0.01 C	0.01 L 0.01 C	±1%
THD-VLN	•	•	•	•						•	•	•	0 %99,9	0 %99,9	±1%
THD-VLL					•	•	•			•	•	•	0 %99,9	0 %99,9	±1%
THD-I	•	•	•	•						•	•	•	0 %99,9	0 %99,9	±1%
Spannungsoberschwingung	•	•	•	•						•	•	•	0 %99,9	0 %99,9	Class 1
Interharmonische Gruppe - V	•	•	•	•									0 %99,9	0 %99,9	Class 1
Harmonische Gruppe - V	•	•	•	•									0 %99,9	0 %99,9	Class 1
Wirkleistungsoberschwingung	•	•	•	•									0 %99,9	0 %99,9	Class 1
Scheinleistungsoberschwingung	•	•	•	•									0 %99,9	0 %99,9	Class 1
Stromoberschwingung	•	•	•	•						•	•	•	0 %99,9	0 %99,9	Class 1
Interharmonische Gruppe - I	•	•	•	•									0 %99,9	0 %99,9	Class 1
Interharmonische Gruppe - I	•	•	•	•									0 %99,9	0 %99,9	Class 1
Kurzzeitflicker	•	•	•	•						•	•	•	020.0 Pst	020.0 Pst	Class A
Langzeitflicker	•	•	•	•						•	•	•	020.0 Plt	020.0 Plt	Class A
Niederspannung	•	•	•	•	•	•	•			•	•	•	0 %100	0 %100	± 0,2 %
Hochspannung	•	•	•	•	•	•	•			•	•	•	0 %100	0 %100	± 0,2 %
Spannungsunwucht										•	•	•	0 %100	0 %100	± 0,15 %
Sternpunktverschiebung										•	•	•	10 600 V	0 1 MV	± 0,2 %
K-Faktor	•	•	•	•											
Stromunwucht										•	•	•			± 0,5 %
Transient	•	•	•	•											25 µs
Ereignisprotokolle	•	•	•	•											10 ms
Rundsteuerung	•	•	•	•	•	•	•			•	•	•			
Wirkleistung	•	•	•	•				•	•	•	•	•	0 10,8 kW	0 999 GW	± 0,4 %
Blindleistung	•	•	•	•				•	•	•	•	•	0 10,8 kvar	0 999 Gvar	± 0,4 %
Scheinleistung	•	•	•	•				•	•	•	•	•	0 10,8 kVA	0 999 GVA	± 0,2 %
Verzerrungsleistung	•	•	•	•				•	•	•	•	•			± 0,5 %
Wirkenergie	•	•	•					•					0 999 GWh	0 999 GWh	Class 0.2
Induktive Blindenergie +/-	•	•	•					•					0 999 Gvarh	0 999 Gvarh	Class 0.2*
Kapazitive Blindenergie +/-	•	•	•					•					0 999 Gvarh	0 999 Gvarh	Class 0.2*
Temperatur										•	•	•			±1°C

* Grundfunktion

Tabelle 1. Die gemessenen und angezeigten Parameter

6. Installation

EMK-01 ist für den Schalttafeleinbau in festen Schaltern eingesetzt. EMK-01 sollte vertikal montiert werden, um eine gute Belüftung zu gewährleisten. Während der Montage soll ein Abstand von oben und unten von mindestens 60 mm und von beiden Seiten ein Abstand von 20 mm vorhanden sein.EMK-01 wird mit zwei Schrauben an der Ober- und Unterseite an der Tür der Kontrolltafel befestigt.

Abb. 3. Abmessungen

7. Anschluss

Der Pegel und die Kategorie der verwendeten Versorgungsspannung müssen mit denen auf dem Etikett auf der Klemmenplatte an der Rückplatte übereinstimmen. Die Versorgungsspannung des Geräts beträgt 230 VAC 50 Hz (+ 10%, - 15%). Spannungsmesskreise sollen wie der Versorgungsspannungseingang über einen Leistungsschalter oder einen Trennschalter und eine Sicherung (2 ... 10 A) in der Nähe des Geräts angeschlossen werden und durch den Benutzer leicht zu erreichen sein. Strommesskreise sind kompatibel mit Stromwandlern mit dem Sekundärwert von 5A oder 1A.

Picture 4. Device connection at TN-C network

7.1. Erdungsleiter

Zunächst soll die Erdungsleiter an das Gerät angeschlossen werden. Die Erdungsklemme ist durch eine Gewindestange mit 3 mm Durchmesser und durch das 🖶 Symbol gekennzeichnet.

7.2. Netzspannung

Eine Netzspannung ist erforderlich, damit EMK-01 funktioniert. Die Kategorie und der Pegel der erforderlichen Netzspannung sind auf der Rückseite angegeben. Stellen Sie vor dem Anlegen der Netzspannung sicher, dass der Spannungspegel und die Betriebsfrequenz mit den Angaben auf dem Etikett übereinstimmen. Die Verbindungskabel der Netzspannung müssen mit einer Sicherung angeschlossen werden. Es wird empfohlen, eine 6A-Sicherung der C-Charakteristik zu verwenden.

7.3. Spannungsmesseingänge

Jeder Spannungsmesseingang muss über einen Leistungsschalter oder Trennschalter und eine Sicherung (10 A, C-Charakteristik) in der Nähe des Geräts angeschlossen werden.

Wichtig

Die Netzwerkspannung muss aus demselben Netzwerk stammen wie die Messspannungen.

Warnung

EMK-01 ist nicht zur Messung von Gleichspannung ausgelegt! EMK-01 ist nicht für die Verwendung in SELV-Netzwerken ausgelegt!

Warnung

Wenn die Spannungsmessungseingänge über Spannungswandler angeschlossen sind, muss die Leistung des Spannungswandlers ausreichend sein. Der Verbrauch an Spannungsmessungseingängen beträgt 5 mW. Nach Empfehlung der Messwandler- Hersteller sollen Spannungswandler verwendet werden, die mit mehr als 70% der maximalen Leistung belastet sind, für das genaueste Ergebnis. Es muss ein Spannungsmesstransformator vorhanden sein, der über 70% belastet ist.

7.4. Strommesseingänge

Das Gerät verfügt über vier Strommesseingänge, die mit Stromwandlern ../5A oder ../1A kompatibel sind. Das Stromwandlerverhältnis kann am Gerät oder über Software eingestellt werden.

Wichtig

Die maximale Kapazität der Stromeingänge beträgt 8,5A, ohne einen Stromwandler zu verwenden.

Wichtig

Stellen Sie vor dem Trennen des Stromkreises sicher, dass die Messklemmen des Stromwandlers miteinander angeschlossen sind.

Warnung

EMK-01 ist nicht für die Gleichstrommessung ausgelegt!

7.5. RS-485

EMK-01 verfügt über eine RS-485-Schnittstelle, die das Modbus RTU-Protokoll unterstützt. Für die RS-485-Verbindung befinden sich A- und B-Verbindungen an einer separaten Klemme auf der Rückplatte des Geräts. Schutz ist nicht erforderlich.

Warnung

EMK-01 hat keinen Abschlusswiderstand. Wenn das angeschlossene Gerät sich am Ende der RS-485-Leitung befindet, muss es mit einem 120 Ω -Widerstand abgeschlossen werden.Die RS-485-Schnittstelle ist vollständig galvanisch isoliert.

7.6. Ethernet

Das Gerät ist mit einer Ethernet-Schnittstelle von 10/100 Mbit/s mit RJ45-Anschluss ausgestattet. Für den Anschluss muss ein Kabel der Kategorie 5 (CAT5) verwendet werden. Die Ethernet-Konfiguration wird vom Netzwerkadministrator festgelegt und muss am EMK-01 entsprechend eingestellt werden. (Siehe Abschnitt 8.3.1.)

Wichtig

Wenn die Netzwerkkonfiguration unbekannt ist, soll das Ethernet-Kabel nicht an das Gerät angeschlossen werden.

7.6.1. LAN-Verbindung des EMK-01

Stellen Sie mit einem UTP-Kabel eine Verbindung zum aktiven Netzwerkelement (Switch, Hub, Router) her.

Warnung

EMK-01 unterstützt keine DHCP-Konfiguration. Die IP-Adresse des Geräts muss manuell eingegeben werden..

7.6.2. WiFi-Verbindung des EMK-01

7.6.3. LAN-Verbindung des EMK-01 über NAT-Server

Wenn eine Zugriffsanforderung (über Internet) an EMK-01 gesendet wird, das in einem lokalen Netzwerk hinter einem Router mit aktivem NAT-Server installiert ist, sollen die folgenden Parameterkonfigurationen auf dem Router vorgenommen werden..

Für den Zugriff auf den EMK-01-Webserver muss eine Portweiterleitung (virtueller Server) erstellt werden:

• router public IP address: port 80 --> IP address of EMK-01: port 80

Für den Zugriff auf den FTP-Server von EMK-01 (Software erforderlich) muss eine Portweiterleitung (virtueller Server) erstellt werden:

- router public IP address: port 21 --> IP of EMK-01: port 21
- router public IP address: port 50000...50005 --> IP of EMK-01: port 50000...50005

Notice

Es ist möglich, die Portnummer 80 durch die Nummer 21 am Router zu ersetzen. Die Ports sind im Bereich 50000 - 50005 festgelegt und können nicht geändert werden. Im EMK-01 müssen die folgenden Parameter eingestellt werden.

- IP public
- FTP: 21 (Werkseinstellung)
- Benutzername : admin (Werkseinstellung)
- Kennwort: 1234 (Werkseinstellung)

Warnung

Für die Kommunikation mit dem FTP-Server des EMK-01 im lokalen Netzwerk wird der Parameter IP-public so eingestellt, dass er mit der IP-Adresse des Geräts übereinstimmt. Um mit EMK-01 durch einen FTP-Server über das Internet zu kommunizieren, wird der Parameter IP-public als public-IP festgelegt, die vom Internet-Server erhalten wird.

7.7.USB

EMK-01 verfügt über eine USB-Schnittstelle vom Typ-B, um das Gerät direkt an den Computer anzuschließen. Nachdem EMK-01 mit einem USB-Kabel an den Computer angeschlossen wurde, soll die richtige Kommunikationsschnittstelle in der Software ausgewählt werden.

		COI	infunication interfac	e	
Interface:	USB cable	×	Communication protocol:	MTP	.*
Use in	terface				

7.8. Temperatursensor

Der Temperatursensor ist direkt mit den in der Abb. 2 angezeigten Eingängen 20 und 21 verbunden. Der Sensor gehört zur Kategorie NTC und hat einen Widerstand von 10 k Ω /25°C.

7.9. Digitale Ein- und Ausgänge

Das Gerät verfügt über zwei optisch isolierte Transistoreingänge / -ausgänge. Die Funktion des Digitalausgangs kann als Alarmausgang, Fernbedienung oder Impulsausgang eingestellt werden.

Abb. 5. Digitale E / A-Verbindung

8. Geräteinstellungen

Die meisten grundlegenden Parameter des EMK-01 können auf dem Gerätedisplay eingestellt werden. Alle Einstellungen sind auf dem Gerätedisplay verfügbar und einige andere Einstellungen werden über die Software angepasst. In diesem Abschnitt werden die Geräteeinstellungen mit den entsprechenden Einstellungen über die Software abgeschlossen.

Gehen Sie im Hauptbildschirm zur Menü Einstellungen, um auf die Untermenüs der Geräteeinstellungen zuzugreifen und die Konfiguration vorzunehmen. Einige Einstellungen des Geräts können nur über die Software konfiguriert werden..

8.1. Sprache

Die Werkseinstellung der Sprache des EMK-01 ist Englisch. Wählen Sie die entsprechende Sprache aus der Sprachenliste und bestätigen Sie. Das Gerätemenü ändert sich sofort entsprechend der ausgewählten Sprache.

8.2. Messungen - Hauptparameter

Im Menü Messung werden die Einstellungen des Anschlusstyps des Messkreises, der Messwandler und der Parameterberechnungsmethoden vorgenommen.

Messungen	00:30 01:01:2000
► Netzform	4UN_4I
Frequenz	
Nennspannung	
Nennstrom	
Rundsteuersignal	
Spannungswandler	230V:230V
Stromwandler	5A:5A
Flicker	230V - 50 Hz
Min / Max löschen	
Clearing Min / Max	600s
Zeitspanne	5s

Doromotor	Definition	Workooinotollung	Einstellhersich
Falameter	Deminition	werksemstenung	Emstembereich
Netzform	Definiert den Anschlusstyp und die Messkreisverbindung	4UN_4I	Chapter 8.2.1
Frequenz	Definiert die Nennbetriebsfrequenz	50 Hz	45 75 Hz
Nennspannung	Nennphasenspannung des Netzwerks	230 V	1 V 750 kV
Nennstrom	Nennphasenstrom des Netzwerks	5 A	1 A 750 kA
Rundsteuersignal	Über die Software einzustellen	50 Hz	50 Hz 3 kHz
Spannungswandler	Primär- und Sekundärwert des Spannungswandlers	230 V / 230 V	1 750 kV
Stromwandler	Primär- und Sekundärwert des Stromwandlers	5 A / 5 A	1 750 kA
Flicker	Einstellungen für Nennspannung und Betriebsfrequenz für die Flickerberechnung	230 V – 50 Hz	120/230 V, 50/60 Hz
Max / Min Löschen	Löscht alle gespeicherten maximalen und minimalen Messparame- ter Nein Ja / Nein	Nein	Ja / Nein
Durchschnitt	Berechnungsmethode für den Durchschnittswert		
Zeitspanne	Zeitintervall für die Berechnung des Durchschnittswerts	5 s	1 3600 s

8.2.1. Netzform

EMK-01 ist für verschiedene Anschlüsse je nach Messanforderung oder Netzwerktyp ausgelegt. Die Verbindungseinstellungen definieren den Netzwerktyp, mit dem EMK-01 verbunden ist. Das Hauptanschlussdiagramm von EMK-01 ist in Abschnitt 7.3 dargestellt. Die folgenden Tabellen zeigen alle möglichen Anschlusstypen an, die im Gerätemenü ausgewählt werden können.

Anschluss asymmetrischer Lasten in TN-C-S-Netzen

Anschluss asymmetrischer Lasten in TN-C-S-Netzen

Asymmetrische Lasten in TN-C- oder TN-C-S-Netzen

Anschluss symmetrischer Lasten mit nur zwei Stromwandeln

MV-Netzwerkverbindung (Aron-Anschluss)

Anschluss für IT-Netzwerke

8.2.2. Nennspannung

Die Nennspannungseinstellung ist die Grundeinstellung für die Schwellenwertberechnung von Spannungsereignissen und Transienten. Der entsprechende Wert der Nennspannung einer Phase soll angegeben werden.

8.2.3. Nennstrom

Die Nennstromeinstellung gibt den Basiswert an, der für die Schwellenwertberechnung der Ereignisse in Bezug auf den Strom verwendet wird.

8.2.4. Flicker

Das Gerät berechnet das Flackern gemäß der Norm EN 61000-4-15. Es gibt Werte für Kurzzeitflicker (10 Minuten) und Langzeitflicker (2 Stunden) an. Für die korrekte Berechnung beider Flickerarten ist es notwendig, die korrekten Nennwerte einzustellen, die in verschiedenen Ländern als Standards verwendet werden. Die verfügbaren Einstellungen sind:

- 230 V 50 Hz
- 230 V 60 Hz
- 120 V 50 Hz
- 120 V 60 Hz

8.2.5. Rundsteuersignal

Die Rundsteuerung bietet Informationen über den effektiven Spannungswert für die spezifischen Oberschwingungsfrequenzen des gemessenen Signals. Die Betriebsfrequenz der Rundsteuerung kann mit der Option, Dezimalstellen festzulegen, von 50 Hz bis 3000 Hz eingestellt werden.

8.2.6. Spannungswandler

Wenn Spannungswandler verwendet werden, müssen die Einstellungen für die Primärund Sekundärspannungswerte konfiguriert werden. Beide Spannungspegel (primär und sekundär) werden in Volt eingestellt.

8.2.7. Stromwandler

Das EMK-01 verfügt über 4 Stromeingänge zur indirekten Messung über Stromwandlermit 5Aoder 1A-Sekundärwerten. Wenn ein Stromwandler zur Strommessung verwendet wird, sollte der Primär- und Sekundärwert des Stromwandlers angepasst werden.

8.2.8. Durchschnittsberechnung

Diese Einstellung definiert die Berechnungsmethode der Durchschnittswerte und die Durchschnittsperiode. Durchschnittswerte können auf dem Gerätedisplay und in der Software angezeigt werden.

Zwei Methoden sind verfügbar für die Durchschnittsberechnung:

- **Die Methode "festes Fenster"** sammelt die gemessenen Werte innerhalb der angegebenen Periode. Nach diesem Zeitintervall werden Durchschnittswerte berechnet und angezeigt. Gesammelte Werte werden gelöscht und die Messungen für die nächste Periode erneut durchgeführt.
- Die Methode "gleitendes Fenster" sammelt kontinuierlich die gemessenen Werte innerhalb der angegebenen Periode und zeigt die während dieses Zeitintervall berechneten Durchschnittswerte an. Für die nächste Berechnung wird der älteste Wert gelöscht und der neu gemessene Wert verwendet.

8.2.9. Energie

Es bietet eine Einstellung des Aufzeichnungsintervalls für vergangene Werte von Energiezählern, die in EMK-01 verfügbar sind.

8.3. Kommunikationseinstellung

Das Gerät ist mit RS-485- und 10/100 Mbit/s-Ethernet-Schnittstelle ausgestattet. Alle Kommunikationseinstellungen können im Abschnitt Kommunikation in der Software vorgenommen werden.

8.3.1. Ethernet

In diesem Einstellungsmenü kann die Ethernet-Schnittstellenkonfiguration des Geräts für Sichtbarkeit und Zugriff im LAN und Internet definiert werden.

Ethernet	00:30 01.01.2000
► Ethernet	
	192.168.005.006
	255.255.252.000
Gateway	192.168.004.001
IP - public	192.168.001.201
Webserver	
Modbus TCP	
FTP - Server	
Uhrzeit Synchronisation	
Senden Test E-mail	
DHCP-Server	Ja

Parameter	Definition	Werkseinstellung	Einstellbereich
Ethernet	Aktivieren oder Deaktivieren der Ethernet-Schnittstelle	Ja	Ja / Nein
IP	EMK-01 IP-Adresse im lokalen Netzwerk	192.168.001.201	
Subnetz	Ethernet-Netzmaske	255.255.255.0	
Gateway	IP-Adresse des Computers oder Routers, der als Gateway verwendet wird	192.168.001.001	
IP – public	public IP-Adresse des Routers	192.168.001.001	
Webserver	Zugriff auf das Webserver-Einstellungsmenü	•	
Modbus TCP	Modbus-TCP-Einstellungsmenü	•	
FTP server	Zugriff auf das Einstellungsmenü des FTP-Servers	•	
Uhrzeit Synchronisation	Zugriff auf das Einstellungsmenü für Zeitsynchronisation	•	
Senden Test E-mail	Ein Test-E-Mail wird gesendet		
DHCP-Server	Aktivieren oder Deaktivieren der DHCP-Server	Nein	Ja / Nein

Warnung

In Fällen, in denen sich das Gerät im Ethernet hinter dem NAT-Server befindet und eine Verbindung zu einem anderen Netzwerk wie dem Internet herstellt, muss die public IP-Adresse festgelegt werden.

8.3.2. Web Server

Das Gerät verfügt über einen Webserver für die Online-Fernüberwachung über das Internet oder ein lokales Netzwerk. In der folgenden Tabelle werden die Einstellungen für die Webserverkonfiguration von EMK-01 erläutert.

Parameter	Definition	Werkseinstellung	Einstellbereich
Webserver	Aktivieren oder Deaktivieren des Webservers	Ja	Ja / Nein
Web - port	Der Port, über den Webserver zugänglich ist	80	0 3850
Web - name	Benutzername, der vom EMK-01-Gerät für den Zugriff auf den Webserver verwendet wird	admin	
Web - Passwort	Kennwort, der vom EMK-01-Gerät für den Zugriff auf den Webserver verwendet wird	1234	

Warnung

Der Webserver wurde für tragbare Geräte wie Handys und Tablets optimiert.

8.3.3. Modbus TCP

Kommunikationsprotokoll Modbus TCP wird zur Kommunikation mit EMK-01 über eine Ethernet-Schnittstelle verwendet.

Parameter	Definition	Werkseinstellung	Einstellbereich
Modbus TCP	Aktivieren oder Deaktivieren der Modbus TCP-Funktion	Ja	Ja / Nein
Modbus TCP - port	Der Port, über den Modbus TCP zugänglich ist	502	1 65535

8.3.4. FTP Server

Der FTP-Server ist ein grundlegendes Kommunikationsprotokoll zum Lesen von gemessenen und aufgezeichneten Daten sowie Gerätekonfigurationen. Es ist erforderlich, zuerst den FTP-Server zu aktivieren, damit EMK-01 ordnungsgemäß mit Software funktioniert.

Parameter	Definition	Werkseinstellung	Einstellbereich
FTP - server	Aktivieren oder Deaktivieren des FTP-Servers	Ja	Ja / Nein
FTP - port	FTP-Service-Port	21	1 65535
FTP - name	Benutzername, der vom EMK-01-Gerät für den Zugriff auf den FTP-Server verwendet wird	admin	
FTP - kennwort	Kennwort, der vom EMK-01-Gerät für den Zugriff auf den FTP-Server verwendet wird	1234	

8.3.5. TCP-Konverter

Weil EMK-01 mit einem Modbus-TCP-Wandler ausgestattet ist, kann Geräte über EMK-01 zugegriffen werden, die an die gemeinsame RS-485-Leitung angeschlossen sind.

Parameter	Definition	Werkseinstellung	Einstellbereich
TCP-Konverter	Aktiviert Modbus TCP-Konverter von EMK-01	Ja	Ja / Nein
Zeitüberschreitung des Konverters	Zeitüberschreitung des TCP-Konverters	500 ms	100 5000 ms

8.3.6. RS485

Für die Verwendung von EMK-01 als TCP/IP-Konverter ist eine Konfiguration der seriellen Schnittstelle (RS-485) erforderlich.

Parameter	Definition	Werkseinstellung	Einstellbereich
ID	Eindeutige Identifikationsnummer im RS485-Netzwerk	0	0 255
Baudrate (Datenübertragungsrate)	Die Kommunikationsgeschwindigkeit der RS485-Schnittstelle kann angepasst werden	9.6 kBd	9.6 kBd / 19.2 kBd/ 38.4 kBd/ 57.6 kBd 115 kBd
Parität	Parität der RS485-Schnittstelle	ungerade	ungerade / gerade / keine
Stop bit	Stop bit der RS485-Schnittstelle	1	1/2

8.4. Analysator

Es enthält die auf dem Gerät angezeigten Parameter wie Farbe, Uhrzeit, Kennwortschutz und Zurücksetzen aller Einstellungen. Diese Einstellungen können auf dem Gerät konfiguriert werden.

Parameter	Definition	Werkseinstellung	Einstellbereich
Display Refresh	Die Bildschirmaktualisierungsrate. Die optimale Einstellung sind 5 cycle.	5 cycle	1-5 cycle
Helligkeit	Betriebshelligkeitsstufe des Displays auf Knopfdruck	90%	0 100%
Standby-Helligkeit	Definiert die Helligkeitsstufe, wenn keine Taste des Geräts entlang der Standby- Zeit gedrückt wird	45%	0 60%
Standby-Zeit	Die für die Helligkeitsstufe der Anzeige benötigte Zeit, nachdem das Gerät in den Standby-Modus wechselt. Four digit password for access to device settings menu Zeit zwischen letztem Tastendruck und Umschalten auf Standby-Helligkeit	10 s	5 - 60
Passwort	Das vierstellige Passwort für den Zugriff auf das Einstellungsmenü des Geräts	0000	0 -9999
Datum und Uhrzeit	Untermenü zur Konfiguration der internen Uhr des Geräts	•	
Farben	Einstellungen zum Anpassen der Farben von Phasenspannungen und -strömen in Grafiken	•	
Zurücksetzen	Setzt das Gerät auf Werkseinstellungen zurück		

8.5. NTP-Server / Zeitabschnitt

Die folgenden Datums- und Uhrzeiteinstellungen werden über das Untermenü Datum - Uhrzeit im Menü Analysator vorgenommen.

Parameter	Definition	Werkseinstellung
Zeit, Messgerät	Einstellung von Datum und UTC-Uhrzeit. Das Datumsformat ist JJJJ.MM.TT und das	
	Zeitformat ist HH.MM.	
Abweichung von UTC Zeit	Der Zeitdifferenz zwischen der lokalen Uhrzeit und UTC ist in Sekunden einzustellen.	3600 s
Sommerzeit, Beginn	Beginn der Sommerzeitperiode (im Datums- und Zeitformat)	
Sommerzeit, Ende	Ende der Sommerzeitperiode (Im Datums- und Zeitformat)	
Sommerzeit, Offset	Die Zeitverschiebung für die Sommerzeit	3600 s

Die NTP-Servereinstellungen werden über die Software konfiguriert.

EMK-01 aktualisiert die interne Uhr gemäß den NTP-Servern, wenn eine Verbindung zum Internet besteht.

Die NTP-Taktsynchronisation hat immer Vorrang vor den oben genannten manuellen Uhrzeiteinstellungen.

Die Zeitsynchronisation mit NTP erfolgt automatisch und es gibt dafür keine Einstellungen erforderlich.

Die Auswahl für den nächstgelegene NTP-Server kann in der Software festgelegt werden. Unter dem folgenden Link sind die nächstgelegenen NTP-Server erreichbar. http://support.ntp.org/bin/view/Servers/StratumOneTimeServers

8.6. E-mail

EMK-01 kann viele Ereignisse und Alarme überwachen und eine E-Mail darüber an 4 verschiedene E-Mail-Adressen senden. Die Einstellung für die E-Mail-Benachrichtigung kann nur über die Software angepasst werden.

Für eine korrekte Einrichtung soll die SMTP-Serveradresse von dem Server abgerufen werden. Wenn der STMP-Server eine Authentifizierung anfordert, geben Sie den Benutzernamen und das Kennwort ein.

Wählen Sie den gewünschten E-Mail-Benachrichtigungstyp und das Sendeintervall aus. Das Sendeintervall definiert, wie oft E-Mails gesendet werden. Der werkseitige Wert des Sendeintervalls beträgt 1 Stunde. Dies bedeutet, dass alle Ereignisse und Alarme, die innerhalb einer Stunde aufgetreten sind, mit einer einzigen E-Mail gesendet werden. Diese Intervalleinstellung verhindert, dass EMK-01 zu viele E-Mails sendet.

Häufig werden die letzten 5 Ereignisse und Transiente-Diagramme auch per E-Mail gesendet. Andere Ereignisse und Transienten werden in der Tabelle aufgeführt.

8.7. Transiente

Transienten sind kurze Änderungen, Stöße oder Schwingungen im Stromnetz. Die Ursache für Transienten kann induktives Lastschalten, Vorrichtungen in Blindleistungsanlagen, atmosphärische Phänomene, Schutzvorrichtungen oder der Ausfall von Schaltelementen im Stromnetz sein.

Der Qualitätsanalysator EMK-01 erkennt zwei Arten von Transienten; absolut Transienten und differenz Transienten.

• Absolut Transienten wird durch Überschreiten des definierten Spannungspegels erkannt. Der Auslöser zur Erkennung absoluter Transienten wird als absoluter Grenzwert (in Prozentsatz von Un) bezeichnet.

• **Differenz Transienten** werden anhand der Differenz zwischen zwei aufeinanderfolgenden Spannungsmessungen erfasst. Der Unterschied zwischen der Messungen wird durch die Differenzialgrenze (in Prozentsatz von Un) beschrieben.

Gemeinsame Einstellungen für absolut und differenz Transienten. Transienten bestehen aus den Parametern, die bei der Feinabstimmung der Transientenerkennung und Transientenregistrierung verwendet werden.

Wenn der Transient erkannt und aufgezeichnet wird, erhöht das Gerät die absoluten und differenziellen Transientengrenzen, um eine falsche Transientenerkennung zu verhindern. Dies verhindert, dass das Gerät falsch aufzeichnet. Diese Funktion des Geräts wird durch die benutzerdefinierten Parameter bestimmt: "der erhöhte Wert" und "die erhöhte Zeit".

"Erhöhter Wert" ist der Wert, der verwendet wird, um die absoluten und differenziellen Transientengrenzen während der Transientenerkennung zu erhöhen. Der eingestellte erhöhte Wert erhöht den Grenzwert für die angegebene Zeit. "Erhöhte Zeit" ist die Zeit, zu der der erhöhte Wert gültig ist. Nach Ablauf der erhöhten Zeit kehrt der Grenzwert auf den benutzerdefinierten Wert zurück.

Wenn eine andere Transiente auftritt, bevor die erhöhte Zeit abgelaufen ist, wird der Grenzwert nochmal erhöht. Nach Ablauf der zweimal erhöhten Zeit kehrt der Grenzwert auf das vorherige Niveau zurück und nach einer weiteren erhöhten Zeit kehrt es auf das benutzerdefinierte Niveau der absoluten und differenziellen Grenzwerte zurück.

Parameter	Definition	Werkseinstellung	Einstellbereich
Absolut Transiente	Aktivieren oder Deaktivieren der absoluten Transiente	Nein	Ja / Nein
Absoluter Schwellenwert	Grenzwerteinstellung der absoluten Transiente	110%	100 500%
Differenz Transienten	Aktivieren oder Deaktivieren der differenziellen Transiente	Nein	Ja / Nein
Differenzieller Schwellenwert	Grenzwerteinstellung der differenziellen Transiente	20%	1 100%
Erhöhte Zeit	Zeitverzögerung vom Beginn des Transienten bis zum nächsten Transienten	5 s	1 20 s
Erhöhungswert	Inkrementalwert für Unempfindlichkeit gegen Transiente nach Aufnahmestart	10 V	1 750000 V
Abtastpunkte nach Ereignis	Die Anzahl der aufgezeichneten Proben nach der Transiente	768	0 8000
Abtastpunkte von Ereignis	Die Anzahl der aufgezeichneten Proben vor der Transiente	768	0 8000

8.8. Ereignisse

Der Speicherplatz ist auf maximal 8000 Proben festgelegt, um bestimmte Transienten zu speichern. Die Anzahl der Vor- und Nachproben ist auf diesen Speicherplatz für die maximalen Proben begrenzt.

Die von EMK-01 aufgezeichneten Ereignisse können mit den in der folgenden Tabelle angegebenen Parametern angepasst werden.

Parameter	Definition	Werkseinstellung	Einstellbereich
Referenz	Referenzspannungspegelkategorie	Udin	Udin / Gleitend
Überspannung ►	Schwellenwert	110%	100 500%
	Hysterese	5%	1 20%
Spannungseinbruch ►	Schwellenwert	90%	1 100%
	Hysterese	5%	1 20%
Spannungsunterbre-	Schwellenwert	5%	1 100%
chung	Hysterese	2%	1 20%
Überstrom	Schwellenwert	110%	100 500%
	Hysterese	5%	1 20%
Abtastpunkte von	Die Anzahl der aufgezeichneten halben Perioden Urms1/2 (10 ms = 1)	10	0 4000
Ereignis	vor dem Ereignis		
Abtastpunkte nach	Die Anzahl der aufgezeichneten halben Perioden Urms1/2 (10 ms = 1)	150	0 4000
Ereignis	nach dem Ereignis		

Der Speicherplatz ist mit maximal 4000 Proben festgelegt, um RMS-Kurven-Proben zu speichern. Die Vor- und Nachprobenanzahlen sind für die maximalen Proben auf diesen Speicherplatz beschränkt.

8.8.1. Spannungseinbruch

Der Grenzwert eines Spannungseinbruchs ist ein Prozentsatz von Udin oder der gleitenden Referenzspannung. Der Benutzer muss vor dieser Einstellung den Referenzspannungspegel einstellen.

In einphasigen Systemen tritt ein Spannungseinbruch auf, wenn die Urms-Spannung unter den Grenzwert des Spannungseinbruchs sinkt. Es endet, wenn die Urms Spannung über oder gleich der Summe aus dem Grenzwert und einer angepassten Hysteresespannung ansteigt.

In Mehrphasensystemen tritt ein Spannungseinbruch auf, wenn die Urms-Spannung einer oder mehrerer Phasen den Grenzwert des Spannungseinbruchs unterschreitet. Es endet, wenn die Urms-Spannung über alle gemessenen Phasen über oder gleich der Summe aus dem Grenzwert und einem angepassten Hysteresewert ansteigt. Der Grenzwert des Spannungseinbruchs und der Hysteresewert werden beide vom Benutzer eingestellt.

8.8.2. Überspannung Swell

Der Grenzwert für Überspannung ist ein Prozentsatz von Udin oder der gleitenden Referenzspannung. Vor dieser Einstellung muss den Referenzspannungspegel eingestellt werden.

In einphasigen Systemen tritt ein Überspannungsereignis auf, wenn die Urms-Spannung über den Grenzwert für Überspannung steigt. Sie endet, wenn die Urms-Spannung um mindestens den Hysteresewert unter den Überspannungsgrenzwert abfällt.

In Mehrphasensystemen tritt ein Überspannungsereignis auf, wenn die Urms-Spannung einer oder mehrerer Phasen den Grenzwert für Überspannung überschreitet. Es endet, wenn die Urms-Spannung über alle gemessenen Phasen um mindestens den Hysteresewert unter den Grenzwert abfällt.

Der Grenzwert für Überspannung und der Hysteresewert werden beide vom Benutzer eingestellt.

8.8.3. Schnelle Spannungsänderungen (RVC)

Schnelle Spannungsänderungen (RVC) sind die Ereignisse, die durch einen schnellen Übergang von einer stationären Spannung zu einer anderen gekennzeichnet ist.

Schnelle Spannungsänderungen werden normalerweise für einen Zeitraum von einer Stunde oder für jeden Tag gezählt. Die Netzsignalspannung, die in bestimmten Anwendungen als Rundsteuersignal bezeichnet ist, ist eine Art von Signalimpulsen.

Diese Signalimpulse werden auf einer nicht harmonischen Frequenz angewendet und zur Fernbedienung von Industrieanlagen, Verbrauchszählern und anderen Geräten eingesetzt. Wenn die Spannungsänderung ausreicht, um den Grenzwert für Spannungseinbruch oder Überspannung zu überschreiten, wird das Ereignis nicht als schnelle Spannungsänderung aufgezeichnet, sondern als ein Spannungseinbruch oder eine Überspannung.

Der Grenzwert für schnelle Spannungsänderung (RVC) und der Hysteresewert werden vom Benutzer angepasst. Der RVC-Schwellenwert ist ein Prozentsatz von Un. Die RVCHysterese ist ein kleinerer Prozentsatz von Un.

Warnung

Obwohl schnelle Spannungsänderungen und Flickerereignisse störendes Flackern der Beleuchtung verursachen, unterscheiden sich diese Konzepte voneinander. Eine schnelle Spannungsänderung ist ein diskretes Ereignis, während Flicker ein quasistationärer Zustand ist.

Parameter	Definition	Werkseinstellung	Einstellbereich	
RVC-Schwellenwert	ein Prozentsatz von Un.	3.3%	1 100%	
RVC-Hysterese	ein kleinerer Prozentsatz von Un.	1%	1 20%	

Laut Norm sind die idealen Einstellungen die RVC-Schwelle bei 3,5% von Udin und die Hysterese bei 1% von Udin

8.9. Eingänge / Ausgänge

Der Qualitätsanalysator EMK-01 verfügt über zwei benutzerkonfigurierbare digitale Ports, die als Ein- oder Ausgang definierbar sind. Die Ein- / Ausgangseinstellungen werden über Software eingestellt.

Die folgenden Ein-/Ausgangseinstellungen werden über die Software konfiguriert.

Parameter	Definition	Werkseinstellung	Einstellbereich
Kanaltyp	Definiert die Verwendungsmethode der Ein- und Ausgangsschnittstelle	Dig Eingang	Dig Eingang / Dig Aus- gang / Impulseingang / Impulsausgang / Alarm
Quelle der Impulse	Diese Einstellung kann nur für den Kanaltyp "Impulsausgang" vorgenom- men werden.		
Impulsfrequenz	Diese Einstellung kann nur für die Kanaltypen "Impulsausgang" und "Impulseingang" vorgenommen werden.	0	
Einheit	Diese Einstellung kann nur für den Kanaltyp "Impulseingang" vorgenom- men werden. Definiert die Einheit der Impulse.		
Digitaler Ausgang	Diese Einstellung kann nur für den Kanaltyp "Digitalausgang" vorgenom- men werden. Definiert den Grundstatus des Ausgangs	Aus	

8.10. Alarme

Das Gerät verfügt über zwei Eingangs-/Ausgangsklemmen, die in vier verschiedene Zustände programmiert werden können. Klemme 1 oder 2 kann so eingestellt werden, dass sie als Alarmausgang arbeitet. Jeder Ausgang besteht aus drei Komparatoren, wobei jeder Ausgang als Alarm eingestellt ist. Die sortierten logischen Funktionen der Komparatoren sind im folgenden Diagramm dargestellt.

Die Komparatoren C1, C2 und C3 gehören zum Ausgang K1 und die Komparatoren C4, C5 und C6 gehören zum Ausgang K2. Wie im Diagramm gezeigt ist, gibt es eine logische Operation zwischen den ersten beiden Komparatoren der Gruppe und eine andere logische Operation zwischen dem Ergebnis der ersten Operation und dem letzten Komparator der Gruppe. Hier stehen zwei logische Operatoren; UND (logische Verknüpfung) und ODER (logische Zerlegung) zur Verfügung.

Die folgenden Einstellungen müssen für jeden Komparator vorgenommen werden. Diese Einstellungen werden über die Software konfiguriert.

Gemessener Parameter - Der überwachte Parameter auf Alarm

- Wert Alarmgrenzwert für den überwachten Parameter
- Beziehung Vergleichskategorie (<, >)
- Dauer Wartedauer auf den Alarm vor der Ausgangsantwort
- min. Dauer Minimale Alarmausgangszeit

Wichtig

Damit ein Alarm richtig funktioniert, müssen der Kanaltyp des zugehörigen Geräteausgangs als Alarmausgang eingestellt werden.

8.11. Analysator - Bildschirmeinstellungen

Dieses Einstellungsmenü beinhaltet die Einstellungen, die sich auf das Gerät selbst beziehen, wie Anzeigeparameter, Farben, Uhrzeit, Kennwortschutz und Zurücksetzen aller Einstellungen.

Parameter	Definition	Werkseinstellung	Einstellbereich
Display Refresh	Die Bildschirmaktualisierungsrate. Die optimale Einstellung sind 5 cycle.	5 cycle	1-5 cycle
Helligkeit	Betriebshelligkeitsstufe des Displays auf Knopfdruck	90%	0 100%
Standby-Helligkeit	Definiert die Helligkeitsstufe, wenn keine Taste des Geräts entlang der Standby- Zeit gedrückt wird	45%	0 60%
Standby-Zeit	Die für die Helligkeitsstufe der Anzeige benötigte Zeit, nachdem das Gerät in den Standby-Modus wechselt. Four digit password for access to device settings menu Zeit zwischen letztem Tastendruck und Umschalten auf Standby-Helligkeit	10 s	5 - 60
Passwort	Das vierstellige Passwort für den Zugriff auf das Einstellungsmenü des Geräts	0000	0 -9999
Datum und Uhrzeit	Untermenü zur Konfiguration der internen Uhr des Geräts	•	
Farben	Einstellungen zum Anpassen der Farben von Phasenspannungen und -strömen in Grafiken	•	
Zurücksetzen	Setzt das Gerät auf Werkseinstellungen zurück		

Die folgenden Einstellungen werden nur über die Software konfiguriert.

Parameter	scription Factory setting Setting ran r E-Mail-Benachrichtigungen verwendete Sprache Englisch Türkisch, Ei Chinesisch tualisierungszeit der angezeigten Werte 5 1 50 ensität der Hintergrundbeleuchtung der LCD-Anzeige des Geräts 50% 0 100%	Setting range	
Saraaba	Ein E Mail Panashrishtigungan yanyandata Shrasha	Englisch	Türkisch, Englisch, Tschechisch,
Sprache	Für E-Mail-Benachrichtigungen verwendete Sprache	Englisch	Chinesisch
Aktualisierungszeit [Zyklus]	Aktualisierungszeit der angezeigten Werte	5	1 50
Hintergrundbeleuchtung	Intensität der Hintergrundbeleuchtung der LCD-Anzeige des Geräts	50%	0 100%

Wenn auf der Gerätetastatur keine Aktion ausgeführt wird, schaltet sich die

Hintergrundbeleuchtung des Geräts innerhalb von 120 Sekunden aus.

Es ist möglich, die Hintergrundbeleuchtung des Displays dauerhaft einzuschalten (ON). In diesem Fall schaltet sich die Hintergrundbeleuchtung bei 50 % ein. Wenn Sie es auf "OFF" stellen, bleibt die Hintergrundbeleuchtung permanent bei 5%.

8.12. Datenspeicherung

Gemessene Parameter können im internen Flash-Speicher gespeichert werden. Die atenspeicherliste enthält die Liste aller speicherbaren Parameter. EMK-01 ermöglicht die Definition von 5 verschiedenen Zeitintervallen mit einstellbarer Zeit und aufgezeichneten Parametern.

Die Liste der aufgezeichneten Parameter in allen Zeitintervallen kann zur späteren Verwendung als Vorlage gespeichert werden. Außerdem steht eine vordefinierte Vorlage gemäß der etzqualitätsnorm EN 50160 zur Verfügung.

8.13. Speichereinstellung

Es ist möglich, den Speicher von EMK-01 zu verwalten, um mehr Platz für bevorzugte Aufzeichnungen zu erhalten. Durch einfaches Verschieben von bestimmten Speichergrenzen ändert sich die Größe des verfügbaren Speicherplatzes.

8.14. Info

Das Info-Menü enthält Informationen zum Hersteller und zur Softwareversion des Geräts.

9. Betrieb

EMK-01 bietet dank seines benutzerfreundlichen grafischen Hauptmenüs, das in Gruppen von zusammenhängenden Merkmalen und Funktionen unterteilt ist, eine komfortable Betriebsmöglichkeit.

Die ▲ und ▼ -Tasten dienen zum Navigieren im Menü. Die -Taste wird gedrückt, um das ausgewählte Menü oder den ausgewählten Parameter zu öffnen. Die T-Taste wird gedrückt, um zum vorherigen Menü oder Parameter zurückzukehren.

9.1.Numerik

Das Menü Messungen zeigt die gemessenen Parameter in numerischer Form an. Parameter werden als Ganzes auf dem Zusammenfassungsbildschirm oder einzeln gruppiert angezeigt.

Außenleitersp	annung	o	00:30 1.01.2000	Übersicht			00.30 01.01.2000
							L3
	040.0		Jv	L-N	213.0v	213.0v	213.0v
L1:	216.Uv	Min: 0.0)v	L-L	370.0v	371.0v	0.0v
			V	Strom	0.0A	0.0A	0.0A
1.21	216 Ov	Max: 0.0 Min: 0.0)v)v	THDU	6. 6%	6.6%	0.0%
LZ.		Avg: 0.0)v	THDI	2.7%	3.4%	0.0%
	247.0	Max: 0.0	v	Cos φ	0.0	0.0	0.0
L3:		Min: 0.0	Jv Jv	P	0.0w	0.0w	0.0w
		Max: 0.0)v	Q	0.0var	0.0var	0.0var
L4:	0.0 v	Min: 0.0)v	S	0.0VA	0.0va	0.0VA
		Avg: U.C		Freq	0.0Hz		

9.1.1. Flicker

Das Gerät berechnet das Flicker gemäß der Norm EN 61000-4-15. Es zeigt Werte für Kurzzeitflicker (10 Minuten) und Langzeitflicker (2 Stunden) an.

9.2. Oberschwingung

Die höheren Oberschwingungsfrequenzen der gemessenen Spannung und des gemessenen Stroms werden in Form von Säulendiagrammen bis zur 50. Ordnung angezeigt.

Wenn die OK-Taste gedrückt wird, wird der Cursor mit dem Oberschwingungswert aktiv. Details zu anderen Oberschwingungen können durch Bewegen der Cursortasten angezeigt werden.

9.3. Vektoren

Auf dem Gerätedisplay werden die Spannungs- und Stromvektoren aller Phasen angezeigt, einschließlich der momentanen Spannungs- und Stromwerte und der Phasenwinkel der Spannungs- und Stromvektoren.

9.4. Graphen

Gemessene Spannungs-, Strom- und Leistungswerte (Wirkleistung und Scheinleistung) können über einem Balkendiagramm angezeigt werden. Die Balkendiagramme verfügen über eine gleichzeitige automatische Skalierung, die sich an die angezeigten Minimalund Maximalwerte anpasst, um einen schnellen und übersichtlichen Vergleich der Messwerte in allen Phasen zu ermöglichen.

Außenleiter	spannung			00:30 01:01:2000	Wirkleist	ung				00.30 01.01.2000
L1:	10.0 30.0	40.0	50.0	60.0 [V]	L1:	10.0	30.0	40.0	50.0	60.0 [W]
L2:	10.0 30.0	40.0	50.0	60.0 [V]	L2:	10.0	30.0	40.0	50.0	60.0 [W]
L3:	10.0 30.0	40.0	50.0	60.0 [V]	L3:	10.0	30.0	40.0	50.0	60.0 [W]
L4:	10.0 30.0	40.0	50.0	60.0 [V]	L4: 0.0	10.0	30.0	40.0	50.0	60.0 [W]

9.5. Scope

EMK-01 zeigt gemessene Signale für Spannung und Strom in allen Phasen an. Durch Drücken der **OK**-Taste kann die angezeigte Phase bzw. Phasen ausgewählt werden. **HOME**-Taste wird gedrückt, um die Phasenauswahl zu verlassen.

Um die Kurve einer einzelnen Phase oder mehrerer Phasen im Diagramm ein- oder uszublenden, drücken Sie die **OK**-Taste und wechseln Sie mit den Tasten **A** und **V** zwischen der Phasen.

9.6. Ereignisse

Der Qualitätsanalysator EMK-01 erfasst und zeichnet Spannungs- und Stromereignisse sowie Transienten auf. Detaillierte Informationen und Signalverläufe werden auf dem Bildschirm des Geräts und auf dem Webserver angezeigt.

9.6.1. Ereignisprotokolle

Die letzten 50 Ereignisse jeder Kategorie werden zusammen mit den Start- und Endzeitstempeln des Ereignisses und der Ereignisgrafik permanent gespeichert. Die Grafiken der erfassten Ereignisse können auf dem Gerätebildschirm mit allen detaillierten Informationen angezeigt werden.

Die aufgezeichneten Ereignisse in den folgenden Kategorien werden im Gerätespeicher gespeichert.

Ereigniskategorie	Definition	
UNTERBRECHUNG	Unterbrechung der Versorgungsspannung mit Elektrizität.	
DIP	Unbeabsichtigte niedrige Spannung, Spannungseinbruch	
SWELL	Unbeabsichtigte hohe Spannung, Überspannung	
RVC	Schnelle Spannungsänderungen	
IMAX	Unbeabsichtigter hoher Strom, Überstrom	

Auf dem Bildschirm Ereignisliste ist es möglich, Ereignisse nach Kategorie zu filtern.

1. Drücken Sie die Fn-Taste (Zoom), um den gewünschten Filter auf die Ereignisliste anzuwenden.

2. Gehen Sie mit den Tasten ▲ und ▼ zu dem gewünschten Ereignis und drücken Sie die OK-Taste, um die Ereignisdetails anzuzeigen.

3. Verwenden Sie die Tasten ▲ und ▼ um die angezeigte Grafik nach rechts oder links zu verschieben.

4. Drücken Sie OK, um eine oder mehrere Phasen auszuwählen, die im Diagramm angezeigt werden sollen, und wählen Sie gewünschte Phase(n) aus.

9.6.2. Schnelle Spannungsänderungen (RVC)

Schnelle Spannungsänderungen sind die Ereignisse, die durch einen schnellen Übergang von einer stationären Spannung zu einer anderen gekennzeichnet ist.

Schnelle Spannungsänderungen werden normalerweise für einen Zeitraum von einer Stunde oder für jeden Tag gezählt.

Wenn die Spannungsänderung ausreicht, um den Grenzwert für Spannungseinbruch oder Überspannung zu überschreiten, wird das Ereignis nicht als schnelle Spannungsänderung aufgezeichnet, sondern als ein Spannungseinbruch oder eine Überspannung.

9.6.3. Transient-Liste

EMK-01 erfasst Transienten so kurz wie 25 µs und speichert die letzten 50 Transienten jeder Kategorie in seinem permanenten Speicher.

Ereigniskategorie	Definition	
Differenziell	Transienten, die durch Differenzialgrenzwert gestartet sind, werden durch Zone definiert	
Absolut	Transienten, die durch den absoluten Grenzwert beginnen, der als der eingestellte	
	Spannungswert definiert ist	

Die Signalverläufe der Transiente-Ereignisse kann durch Drücken der Fn-Taste (Zoom) in die Detailansicht gezoomt werden. Die Detail-Zoomansicht kann mit den Tasten ▲ und ▼ gescrollt werden.

9.6.4. Versorgungsunterbrechungen

Die Unterbrechungen der Versorgungsspannung des Gerätes werden im Speicher abgelegt. Jede Aufnahme wird mit Datum und Uhrzeit von Beginn und Ende des Stromausfalls gespeichert. Die letzten 15 Versorgungsunterbrechungen werden permanent gespeichert und in der Liste angezeigt.

10. Web-Schnittstelle

EMK-01 verfügt über einen eingebauten Webserver, um die gemessenen Parameter in Internetbrowsern anzuzeigen. Um den Webserver zu aktivieren, sollen die Webserver-Einstellungen (Abschnitt 8.3.2) konfiguriert werden. Der Webserver ist mit einem Webbrowser ausgestattet, der den HTML 5-Spezifikationen entspricht.

Der Webserver des Geräts kann verwendet werden, nachdem die IP-Adresse des Geräts im Webbrowser eingestellt wurde. Der Zugang zur Webseite erfolgt über Benutzername und Kennwor

Warnung

Der werkseitig voreingestellte Benutzername ist "admin". Das werkseitig voreingestellte Kennwort ist "1234".

11. Software-Update

Die Firmware kann aktualisiert werden, wenn eine neue Version der Firmware veröffentlicht wird. Die Gerätesoftwaredatei wird als exe-Datei bereitgestellt, die direkt auf einem Windows-PC ausgeführt werden kann.

Für ein erfolgreiches Firmware-Update verbinden Sie den EMK-01 über Ethernet mit dem PC, auf dem die aktuelle Firmware läuft. Geben Sie die IP-Adresse sowie den Benutzernamen und das Kennwort von EMK-01 ein. Durch Drücken der Connect-Taste wird der Zugriff des EMK-01 überprüft und das Firmware-Update gestartet.

Wichtig

Während des Firmware-Updates soll das Gerät ständig mit Strom versorgt werden und die Ethernet-Verbindung soll nicht entfernt oder unterbrochen werden.

12. Technische Daten

Merkmal	Definition
Netzspannung	230 VAC (+10%, -15%) 50/60 Hz 85-265 VAC/DC (optional) 20-60 VAC/DC (optional)
Energieverbrauch	< 8 VA
Phase-Neutral-Spannungsmessbereich V L-N	2 600 VAC
Phase – Phasen-Spannungsmessbereich V L-L	4 1000 VAC
Strommessbereich	0,001 6 A (8,5 A)
Frequenzmessbereich	40 70 Hz
Genauigkeit der internen Uhr	< 1 s/Tag
Anzahl der Ein-/Ausgänge	2
Ausgangstyp	NPN-Transistor, potentialfrei, optisch isoliert
Maximale Spannung für die Ausgangsnutzung	24 VDC
Maximale Ausgangsbelastbarkeit	100 mA
Impulsdauer von Impulsausgang	70 ms (10 ms minimale Impulspausendauer)
Eingangstyp	potentialfrei, optisch isoliert
Maximale Eingangsspannung	24 VDC
Maximaler Eingangsverbrauch	10 mA
Spannungswandlerverhältnis	1 750 000
Stromwandlerverhältnis	1 750 000
Stromunterbrechungsspeicher	15 Ereignisse
Abtastrate	40 kHz
Auslösende Ereignisse	10 ms
Speicher	1 GB
Bildschirmtyp und -größe	VGA TFT 5.6"
Temperatureingang	NTC-Sensor, 10 kΩ / 25°C
RS-485-Port	RS-485 (optional) / Modbus RTU / 9.6; 19.2; 38.4 ; 57.6 ;115 kBd
Ethernet	RJ45 / 10 / 100 Mbit
USB	Тур В
Überspannungskategorie	600 V CAT III
Verschmutzungsgrad	2
Betriebstemperatur	-25°C +70°C
Abmessung auf der Schalttafelabdeckung	144 x 144 mm
Panel-Abschnitt	136,5 x 136,5 mm
Tiefe	75 mm
Gewicht	1350 g
Schutzklasse	IP20 Rückplatte / IP54 Frontplatte
Zugehörige Normen	IEC 61000-4-30 Class A, IEC 61000-4-7, IEC 61000-4-15, IEC61557-12

 ENTES Elektronik Cihazlar Imalat ve Ticaret A.S.

 Adr:
 Dudullu OSB; 1. Cadde; No:23 34776 Umraniye - ISTANBUL / TURKIYE

 Tel:
 +90 216 313 01 10
 Fax: +90 216 314 16 15

 E-mail:
 contact@entes.eu
 Web: www.entes.eu

 Call Center Technical Support: 0850 888 84 25

